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Summary

Segmenting individual cell nuclei from microscope images

normally involves volume labelling of the nuclei with a DNA

stain. However, this method often fails when the nuclei are

tightly clustered in the tissue, because there is little evidence

from the images on where the borders of the nuclei are. In

this paper we present a method which solves this limitation

and furthermore enables segmentation of whole cells. Instead

of using volume stains, we used stains that specifically label

the surface of nuclei or cells: lamins for the nuclear envelope

and alpha-6 or beta-1 integrins for the cellular surface. The

segmentation is performed by identifying unique seeds for

each nucleus/cell and expanding the boundaries of the

seeds until they reach the limits of the nucleus/cell, as

delimited by the lamin or integrin staining, using gradient-

curvature flow techniques. We tested the algorithm using

computer-generated objects to evaluate its robustness

against noise and applied it to cells in culture and to tissue

specimens. In all the cases that we present the algorithm

gave accurate results.

1. Introduction

Computer-based segmentation and reconstruction of cell

nuclei from microscope images allows the study of individual

cell nuclei within their natural tissue context. This is vital

for understanding the molecular basis behind how tissue

develops, how the cellular organization of tissue remains

stable through the adult life of the organism, and what goes

wrong in cancer development, which is associated with a

loss of tissue organization.

Traditionally, nuclear segmentation has been done using

images of nuclei counterstained with fluorescent DNA

probes (e.g. PI, DAPI, Hoechst) which stochiometrically

bind to the DNA, producing images with high contrast

between nuclear areas and surrounding background.

Manual methods, based on drawing with a mouse the

boundaries of the nuclei, are the gold standard, but the

amount of interaction required is too high for most appli-

cations where many nuclei must be segmented. A number

of algorithms have been developed to automatically or semi-

automatically segment nuclei in 2D (Lockett & Herman,

1994; Dow et al., 1996; Malpica et al., 1997) and 3D

images (Rigaut et al., 1991; Irinopoulou et al., 1997;

Rodenacker et al., 1997; Lockett et al., 1998; Ortiz de

Solorzano et al., 1999). With more or less sophistication, all

these algorithms rely on the existence of unstained areas

(background) between the nuclei. As a result, these

algorithms perform particularly well in specimens that

contain isolated or not too clustered, morphologically

normal nuclei, but fail otherwise. Unfortunately, real tissue

specimens and many cell cultures seldom fulfil these

requirements at the resolution of optical microscopy.

We have explored an alternative avenue to DNA stain

based nuclear segmentation, which uses stained proteins

located on the nuclear lamina, a protein mesh that

underlies the inner membrane of the nuclear envelope.

Therefore, using fluorochrome-tagged antibodies against

one or a combination of lamins, a detectable signal between

nearest neighbour nuclei can be obtained in 2D or 3D

(confocal) images of cell cultures or tissue. Thus, the

domain occupied by each nucleus is nicely delimited,

no matter how clustered the nuclei might be (see Figs 4a

and c).

We also want to segment whole cells in order to quantify

the expression of cytoplasmically localized proteins and

mRNAs. We propose to do this using cell surface-bound

protein markers. This is an unexplored area that extends the

method for segmenting nuclei proposed above. In this case,

we believe that the use of cell surface markers is the only

approach because cells always touch each other in solid

tissue and are thus `inherently clustered'. As cell surface
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markers we used integrins, which are a family of cell-surface

transmembrane proteins that facilitate cell±cell and cell±

extracellular matrix interaction (Bosman, 1993). Specifi-

cally, we used either alpha-6 or beta-1 integrins, because of

their ubiquitous expression: they have been localized on

almost all epithelial cell types as well as the endothelial cells

of capillaries and in mast cells (Koukoulis et al., 1991).

To the best of our knowledge, there is only one previous

report on segmentation based on cell surface markers

(Dow et al., 1996). They used multiple fluorescent staining

(DNA 1 three monoclonal antibodies against surface

antigens: CD3, CD8 and HLA-DR) to identify tumour

infiltrates in melanoma tissue sections. They first detected

cell nuclei using a watershed-based algorithm applied to the

image of DNA staining and then used the segmented nuclei

as seeds for a snake spline adjustment (Kass et al., 1988)

directed to the labelled surfaces of the cells. What distin-

guishes our work from theirs is that we want to do

segmentation of both nuclei and whole cells using surface

markers when the standard DNA stain-based algorithms do

not provide accurate results. Furthermore, we wanted to

avoid as much as possible the limitations of the snake

approach, which requires a close initialization (proximity

between the initial surface and the surface to reach) and

assumes surface smoothness.

The approach we have taken here for segmentation of

surface labelled specimens is in part inspired by methods

used in the medical imaging field to solve `cavity detection'

problems (e.g. Balzer et al., 1998; Dastidar et al., 1999;

Kikinis et al., 1999). Some of these problems were addressed

using region growing algorithms, which assume an internal

homogeneity and may require a priori knowledge about the

shape of the objects. In our images, the noise level, the

inherent heterogeneity of the staining and the variability of

nuclear shapes and sizes dissuaded us from using this

approach. An alternative method is edge finding algorithms

that use gradient information to detect discontinuous edges

that are subsequently joined using morphological matching

or energy optimization techniques (Cohen & Cohen, 1993)

to find the surface that best matches the gradient map.

However, these methods assume local surface smoothness

and require a precise initialization. Therefore we did not use

them.

Encouraged by recent advances on the application of

partial differential equations (PDEs) to image filtering and

segmentation (Alvarez et al., 1993; Romeny, 1994; Malladi

et al., 1995; Malladi & Sethian, 1996, 1997, 1998; Mikula

et al., 1997; Elmoataz et al., 1998; Sochen et al., 1998; Sarti

et al., 1999) using gradient-curvature driven flows, we have

also applied them to our problem.

In this paper we present and demonstrate our segmenta-

tion approach, which is based on gradient-curvature driven

flows. It first requires finding an internal seed that uniquely

identifies each cell/nucleus in the image. Then each seed's

surface is dilated until its surface aligns with the nuclear

lamina or cell membrane surface. By contrast with the

energy optimization methods, this method does not have

strict initialization requirements in that the size, shape and

position of the seed are not as critical in providing an

accurate segmentation. Furthermore, the flows can be

adapted to local image characteristics, such as curvature,

edge strength and direction, etc. Advantages from the

implementation point of view are that a discrete approach

can be used to approximate the solution of the flow equation

that describes the movement of the surface, and that

geometrical parameters such as the curvature of the surface

can be easily extracted from the higher dimensional

function.

2. Materials and methods

2.1. Sample preparation

2.1.1. Nuclear lamina staining. HMT-3522 S1-50 human

immortalized mammary epithelial cells (HMECs) were

propagated as monolayers in chamber slides in chemically

defined medium (Petersen et al., 1992). After 5 days, the

culture showed multiple islands of clustered cells. Cells

were fixed either in methanol-acetone (1 : 1) at 2 20 8C for

10 min or in paraformaldehyde (following 0.5% Triton

permeabilization) for 30 min at 4 8C. Immunostaining was

performed using a protocol already described (LelieÁvre et al.,

1998). Mouse IgG1 anti-laminB antibody was purchased

from Matritech (Cambridge, MA) and secondary anti-mouse

IgG1 FITC-conjugated antibody was purchased from Jackson

Laboratories (West Grove, PA, U.S.A.).

2.2.1. Cell surface staining. The same 2D cell culture

described for the nuclear staining was also used for cell surface

staining with antibodies against either alpha-6 integrin or

beta-1 integrin from Pharmingen (San Diego, U.S.A.).

Finally, tissue sections were prepared as follows: Nulli-

parous mouse mammary gland was fresh frozen in

embedding medium and 5 mm cross-sections were fixed in

methanol/acetone (1 : 3) for 5 min prior to incubation with

the beta-1 integrin primary antibody (Pharmingen) as

previously reported (Barcellos-Hoff, 1993).

The integrin antibodies for both cultured cells and tissue

were conjugated with FITC.

2.2. Image acquisition

Confocal images from lamin and integrin-stained specimens

were acquired using a laser scanning confocal microscope

410 (Carl Zeiss Inc., Thornwood, NY) equipped with an

Axiovert 100 inverted microscope (Zeiss), a 63�, 1.4 NA

plan-Apochromat objective lens (Zeiss) and an Argon/

Krypton (Ar/Kr) laser. The specimens were excited using
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the 488 nm line of the Ar/Kr laser. The resolution of the

images was close to the theoretical maximum (0.2 mm in

the lateral (x, y) direction, 0.5 mm in the axial (z) direction).

The images had an average of 40 z-sections and were

manually selected to contain clusters of cells. Images were

stored in the ICS image format (Dean et al., 1990) and

transferred to a Unix workstation for archiving and

analysis.

2D images from integrin-stained tissue sections were

imaged on an Axioplan Microscope (Carl Zeiss Inc.), using a

40�, 0.75 NA Plan_Neofluar objective lens (Zeiss), and a

100 W halogen lamp (Osram, Germany). Images were

stored in TIFF format.

2.3. Image analysis (nuclear segmentation)

The following sections describe how the algorithm works in

2D.

2.3.1. Locating a seed inside each nucleus. The objective is to

find a single seed inside each nucleus, which is any closed

area of the image entirely within the boundaries of its

nucleus. Finding more than one seed inside a nucleus

causes oversegmentation (the nucleus will be divided into

more than one object). If no seed is found within a given

nucleus, the algorithm will not be able to detect it.

Our seed-finding method is inspired by the Hough

transform (HT) algorithm (Ballard, 1981), and a full

description of the method can be found in Ortiz de Solorzano

et al. (1999). Briefly, the method is as follows. First, the

magnitude and direction of the gradient at each pixel in the

original image is calculated using a 3 � 3 Sobel filter,

producing the image IG. Then a new image, IR, which is

initially empty, is generated as follows. For each pixel in IG

its intensity is added to the intensities of the two pixels in IR

that are a distance R away in the positive and negative

directions of the gradient. This procedure is repeated for a

range of values of R, resulting in a set of images IR. The

rationale for this approach is that for quasi circular objects

(see Fig. 1a) the intensities from IG will accumulate near the

centre of the circle in image IR when R is approximately the

radius of the circle (see Fig. 1b). By contrast, image IR will

show a diffuse pattern when R does not approximate the

radius. In other words, the image IR that was generated

from the correct value for R(IRest) is the one that is most `in

focus'. This image can be automatically identified from the

set of images IR by use of a focus measurement algorithm.

For each image, IR this algorithm calculates the summation

of the magnitude of the gradient at every pixel and reports

the images with the highest sum as being the most `in

focus'. Here, gradient was calculated as the difference in the

intensities of adjacent pixels in the x direction.

The clusters of signals in image IRest (Fig. 1b) are used as

seeds for initialization of the boundary finding process

described in the next section. This image is then Gaussian

filtered with s� R/4 to remove noise (Fig. 1c) and to take

into account that not all objects are the same size or

perfectly circular. Then the peaks of the image are extracted

using a dome extraction algorithm which uses morpho-

logical reconstruction (Vincent, 1993) (Fig. 1d). Each peak

is considered a seed, and its surface is dilated as described

below to the true surface of the object.

Alternatively, seeds can also be interactively defined by a

mouse click somewhere in the object. In our experience the

location of the seed in the object was not critical.

2.3.2. PDE based segmentation of nuclei and cells. Our

segmentation method consists of moving the surface of each

seed until it adopts the form of the enclosing nucleus or cell,

as delineated by the surface staining. This is accomplished

by enunciating and solving the equation that describes the

movement of the surface from the initial position, defined by

the seed finding algorithm above, to its final position, where

the seed's surface aligns with the surface. We allow the

surface to move only in the normal direction at a speed that

depends on a force term F(x) which is tuned to local

characteristics of the surface along with properties of the

original image. The particular details of the force term are

described below.

To solve the equation of the movement of the surface

under the force term F(x), we adopted the level set

approach, where the moving surface g(x) is embedded as

the zero level set of a higher dimensional function c (x)

(Sethian, 1997). Then the equation of the movement of the

function can be written and solved as a PDE:

ct 1 F j7cj � 0 �1�
with a given initial condition c (x, t � 0) � c0 which we

chose to be the distance transform d(x) of the seed's surface

g(x), assigning negative distances for pixels inside the

evolving object and positive distances for pixels outside it.

The level zero curve c (0, t � T) holds the position of the

evolving seed's surface at any time point T in the evolution

of the function. The rest of the level sets are iso-distance

curves c (d, t � T), which contain all pixels located a

distance d from the level set 0. We can see the evolution of

Fig. 1. Example of the use of the algorithm using a computer-generated image (a) simulation of a cluster of three surface-stained nuclei.

Seeds are detected using a method based on the Hough transform (HT), where gradients of the original image are projected using an estimate

of the object size (b). The HT image (b) is then smoothed using a Gaussian filter (c) and then seeds are extracted from (c) using a

morphological peak detection algorithm (d). Each seed, which uniquely identifies one of the nuclei (e), is then moved using the sequence of

flows: initial expansion (f), free expansion (g) and surface wrapping (h).
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the function c (x) as the evolution of a front of iso-distance

surface. Therefore we will use the term front to refer to the

function c (x).

The equation of the movement of c (x) is solved using

finite differences and an iterative scheme. Moving the front

m steps is equivalent to calculating c (d, t � mD t) for all

the pixels in the image. The evolution of the seed's surface

is defined by those pixels (i, j) in which c ij(x) � 0 after m

iterations of the algorithm, being D t the unit (quantum)

movement per iteration. Dt is an important parameter, since

it determines the speed of the movement. If D t is too large

the front cannot converge to a stable solution or voids the

effect of the force term. If D t is too small, errors do not arise,

but the front evolves very slowly, with the consequent

computational and time cost. Our approach to select D t is

empirical. However, once a value has been found appro-

priate for a given image, it can then be used for similar

images. For more details about the implementation see

(Osher & Sethian, 1988; Sethian, 1997).

To reduce computation time, we used a narrow band

method (Sethian, 1997) that consists of updating the front

only for those pixels located within a distance dmax of the

level set 0. This approach substantially reduces computa-

tion time by not spending time in areas which are far away

from the zero level set. The distance transform has to be

rebuilt after several narrow band iterations. In our case we

rebuild it every 10 iterations, since we found that number a

good trade-off between computation time and accuracy.

If an image contains n nuclei, each seed is embedded in

an independent function c i, (1 # i # n) which is moved

independently of the other fronts. In order to prevent the

fronts from crossing when they are expanding, their

movement is limited by the position of the other fronts.

Accordingly, every time a front is moved one step, the

outcome is considered as a trial function. The final

movement of the front is computed as the maximum

between the value of the trial function and the value of the

other fronts.

c i
m11 � max {c i

m11�trial �;c
j
m};1 < j < n; i ± j �2�

2.3.3. Sequence of flows. To solve our particular problem,

we devised a sequence of flows to accomplish the goal. What

follows is a description of the sequence of flows, their effect

being also illustrated on a synthetic image (see Fig. 1)

which resembles the type of image that we want to segment.

Figure 1(d) shows the initial seeds, which correspond to the

zero level sets of ci
0, (1 # i # 3) at time zero.

Flow 1. Initial expansion. The initial flow moves the front

towards the internal surface. It follows a particularization of

the general Eq. (1):

ct 2 g´�1 2 1H�´j7cj2 b7g´7c � 0 �3�

The first term, g, attracts the surface towards areas of the

image with high gradient. This is done through the

nonlinear gradient function g:

g�x� � e2aj7�G�I0�x��j;a . 0 �4�
where G*I0(x) is the convolution of the original image I0(x),

with a Gaussian function (G). x ; (x1, x2) for a two

dimensional image. The standard deviation of G, s
determines the size of the smallest object preserved by the

filter. The effect of g is to speed up the flow in those areas

where the image gradient is low (g ù 1) and slowing it

down where there is high gradient (g ù 0). The parameter a

determines the sensitivity of the flow to the gradient.

The effect of g is modulated by the second term (1 2 1H),

which contains an inflationary term (11), enhanced or

opposed by a curvature term (1H) that regularizes the

surface by accelerating the movement of those parts of the

surface that are behind the average of the front (and

therefore have a negative curvature) and slowing down the

advanced parts of the flow (parts with positive curvature).

The parameter 1 determines the strength of the regulariza-

tion: a low 1 allows creating or maintaining sharp corners

on the fronts, while a high value will smooth out front

irregularities and in the extreme case will result in only

circular objects. In practice an intermediate value of 1 was

chosen so that concavities in nuclear and cell borders,

which have low curvature, are followed, but bright spots

from punctate staining, small gaps in the staining and noise

are smoothed over.

The third term in Eq. (3), b7g is a parabolic term that

enhances the edge effect, once an edge is reached due to the

effect of the first two terms. It aligns all the level sets with

the ideal gradient, which would be a perfect step function,

centred at the point of maximum gradient in the original

image.

Because of the gradient, the front slows down almost to a

stop when it reaches the inner face of the nuclear surface.

This can be used as the stop condition for the flow when the

algorithm is run in an unsupervised way. It can be imple-

mented by checking the volume increase after each iter-

ation, and setting a minimum threshold of volume change

that when reached will interrupt the flow. Otherwise, a

conservatively high number of iterations can be done that

will ensure that the front will reach the internal side of the

stained surface. The result of this initial flow can be seen in

Fig. 1(f).

The flow described above produces an initial, but under-

estimate of the nuclear shapes, but does make subsequent

flows independent from the size or shape of the initial seeds.

The purpose of the subsequent flows is to correct for this

underestimation.

The values of the parameters used in this flow, a, b, 1, D t,

are determined empirically. In our experience, a given set of

parameters can be used for images within a broad range of
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image characteristics (gradient, noise level, etc.), as will be

shown below. Variations of the parameters or the image

properties will mainly alter the speed of the segmentation

(how fast the front converges to the final position) but not

the accuracy of it.

Flow 2. Free expansion. The second flow detaches the front

from the inner surface of the staining and allows it to

expand freely and independently from the gradient in the

original image. The equation that describes the movement

is:

ct 1 j7cj � 0 �5�
The only limit to the expansion of a front is the position of

the other fronts. The expansion is allowed only for a number

of steps that ensure that all the flows move beyond the outer

surface. The number of steps can be again empirically

calculated based on the membrane width or a fixed value

can be used that will ensure the desired evolution of the

front. The result can be seen in Fig. 1(g).

Flow 3. Surface wrapping. Finally, the surface must be

moved inwards until it finds the external stained surface. To

do this we use the flow:

ct 2 g�21 2 1H�j7cj � 0 �6�
which is similar to Eq. (3), but with a negative advection

value, which moves the front inwards, and with the

function g dependent on the intensity alone of the image,

and not on its gradient.

g�x� � e2ajG*I0�x�j;a . 0 �7�
The last term in Eq. (3) is also removed. The effect of this

flow is an inward movement opposed by high intensity

values, as those represented by the maximum intensity of

the stained lamina. The result is shown in Fig. 1(h).

The characteristics of the staining of the cellular surface

based on integrins are not very different from those of the

nuclear staining using lamin antibodies. Therefore, we used

the same sequence of flows, with identical parameters as the

ones used for the image in Fig. 1. Figure 2 shows a com-

puter model which represents a group of cells forming a

structure that resembles a duct in mammary tissue.

Figure 2(a) is the original image with the seeds interactively

drawn. Figure 2(b) shows the results after using the same

sequence of flows as used for Fig. 1.

2.4. Testing

2.4.1. Robustness against noise and changes in gradient. First

we checked the accuracy of the algorithm and its robustness

against noise and gradient variations. In the test, we used

the same computer-generated objects used to illustrate the

way the algorithm works (Fig. 1). The image was segmented

multiple times following changes in surface intensity and

under different levels of Gaussian noise. Following the

method described in Ortiz de Solorzano et al. (1999), we

tested the accuracy of the algorithm by measuring the

average distance of the true surface to the surface obtained

using our segmentation algorithm.

2.4.2. Resistance to surface discontinuities. We evaluated the

resistance of the segmentation against discontinuities in

the surface staining. This was done using the computer-

generated object shown in Fig. 3, by introducing gaps of

increasing size (3, 6 and 9 pixels), and determining if the

flow converged to the desired surface or escaped through

the holes. Given that 1 is the parameter that controls the

local curvature of the flow, we determined the minimum

value of 1 that prevented the flow from escaping through

Fig. 2. Computer-generated object simulating a group of integrin-stained epithelial cells. (a) Manual initialization of the segmentation.

(b) Final segmentation result after applying the algorithm described in the text.
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the holes. The values of the rest of the parameters were the

same as those used above.

2.4.3. Testing with real images. The algorithm was tested

on real images of lamin- and integrin-stained cells in

culture and tissue to demonstrate the practical application

of the approach. The images were selected to cover a range

of situations of staining quality and image noise which gave

us confidence that the algorithm would work on images

from a wide variety of specimens.

3. Results

Unless specified, the values for the parameters used in all

the experiments (see Table 1) were the same as those used

for the segmentation of the computer-generated image

shown in Fig. 1.

3.1. Robustness against noise

Table 2 shows the average distance in pixels between the

true surface of the computer-generated, noise-free object

shown in Fig. 1(A), and surfaces detected by the algorithm

of the same object after varying the contrast and addition of

noise. Contrast was defined as the difference in grey level

between the intensity on the surface and background

intensity. As shown in Table 2, the average distance

remained below one pixel for contrasts of 150 or greater,

except for the highest noise levels tested (image 6). For all

other cases, the average distance remained under two

pixels.

For comparison of the values shown in Table 2 to those

for images of real tissue, the noise and gradient values of

our real images (measured from many images) were always

in the range of noise levels for images 1 and 2 in Table 2,

with gradient values higher than 150. Therefore we can

expect an average distance (accuracy) lower than 0.37.

Only very dim images with poor noise conditions will

generate higher errors, but the use of analysing those

images is at least dubious, given their poor image properties.

3.2. Resistance to surface discontinuities

Table 3 shows the minimum value of 1 required to prevent

the flow from escaping through holes of increasing size in

the `surface' represented by the image in Fig. 3.

Fig. 3. Computer-generated object used to determine the robust-

ness of the algorithm against surface discontinuities. The gaps in

this image are 6 pixels wide.

Table 1. Parameters used in the flows. Gradient attraction (a),

edge effect (b), curvature-limiting effect (1), step size of the

numerical approximation to the solution of the PDE flow (Dt),

number of iterations of the approximation (# iter).

a b 1 Dt # iter

Flow 1 0.1 0.2 0.005 0.0005 200

Flow 2 0 0 0.005 0.0005 20

Flow 3 0.05 0 0.005 0.0005 40

Table 2. Robustness of the algorithm against noise. The table

shows the average surface error after segmenting the image in

Fig. 1 under different noise conditions. Six noise levels (1±6) were

considered, by adding Gaussian noise with 0 mean and increasing

standard deviation (SD). The SD values for the signal and

background are shown in rows 2 and 3, respectively. Decreasing

values of image quality were also considered, by reducing the

gradient between background and signal from 250 to 100 in steps

of 50 intensity values. The error values are shown in rows 4 to 7.

Image 1 2 3 4 5 6

Signal SD 34.21 35.34 39.87 43.16 41.17 49.19

Back SD 12.63 17.4 22.49 25.27 27.8 31.6

Contrast: 250 0.3 0.45 0.57 0.69 0.84 0.98

Contrast: 200 0.2 0.37 0.53 0.69 0.89 1.01

Contrast: 150 0.2 0.35 0.47 0.8 0.92 1.01

Contrast: 100 1.13 1.56 1.32 1.2 1.65 1.56

Table 3. Robustness of the algorithm against surface discontinui-

ties. The table shows the minimum value of 1 that was used to

prevent Flow 1 from escaping through the holes inserted in the

image in Fig. 3.

Gap size 3 pixels 6 pixels 9 pixels

Parameter 1 0 0.005 0.01
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As we can see, for the hole sizes studied, we always found

a value of 1 that prevented the flow from flowing through

the holes. An obvious consequence of increasing the value

of 1 is that the flow will follow the surfaces less accurately if

they are highly convoluted. This poses a trade-off choice

between surface accuracy and `hole' filling of the flow that

should be solved by the user. We also point out that the

watershed algorithm will fail to accurately find these

surfaces at the location of holes (unless the hole is exactly

halfway between the two opposing starting points).

3.3. Experiments with real images

So far, the lamin staining in biological specimens has been

observed to be high-intensity, continuous along the inner

membrane of the nuclear envelope and the cellular

membrane, and diffuse low-intensity inside the nucleus,

with some sporadic concentrations of protein inside the

nuclei. However, the lamin stain was not always homo-

geneous, showing concentrations of protein in some parts of

the nuclear envelope.

All of the nuclei/cells that we used to test the algorithm

were successfully segmented. We segmented 19 lamin-

stained nuclei from cultured cells, 24 integrin-stained cells

from cultured cells and 23 integrin-stained cells in tissue.

Examples of the images, which are 2D images selected

from the acquired confocal 3D sets (except 2D-conventional

images of real tissue sections) are shown in Figs 4±6, along

with the results of the flow superimposed on the original

images. Figure 4 shows two examples of the segmentation

Fig. 4. Examples of the segmentation results on real images from cultured lamin-stained cells. (a) and (c) show the original images with the

automatically detected seeds. (b) and (d) show the results, superimposed on the original images.
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of nuclei in cultured cells stained with lamin antibodies.

Figure 5 shows two examples of whole cell segmentation

using integrin staining in cultured cells, where the cells

formed acini mimicking ducts of the mammary gland.

Figure 6 shows whole cell segmentation in intact tissue

stained for integrin. Note that both Figs 5 and 6 contain

cells with concavities in their surfaces, which the algorithm

was able to follow.

These examples demonstrate that the algorithm con-

verges to the nuclear or cellular surface, and that it admits a

range of variation in the quality of the staining within and

between images. Some tuning of the parameters might be

necessary to adapt the segmentation to images substantially

different from the images used.

4. Discussion

In this paper we have presented an algorithm for segment-

ing cells and nuclei based on immunostaining of proteins

associated with the plasma and nuclear membranes,

respectively. These proteins (lamins for the nuclear envelope

and integrins for the cell membrane) precisely delineate the

shape of the nuclei and cells. Being able to follow nuclear

shape will permit a better understanding of the positions of

intranuclear components relative to the nuclear surface in

cases where the nuclear shape is contorted. Furthermore,

nuclei delineation using lamin or other nuclear-envelope

bound proteins is the only segmentation alternative possible

when the DNA is condensed or highly heterogeneously

Fig. 5. Examples of the segmentation results on cultured, integrin-stained cells. (a) and (c) show the original images with the interactively

drawn seeds. (b) and (d) show the results, superimposed on the original images. The white arrows in (b) show concavities that were followed

by the algorithm.
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distributed within the nucleus. Moreover, lamin staining

should permit accurate delineation of the nuclei when the

DNA does not completely extend to the nuclear surface, or

in those cases where the nuclear surface forms profound

intranuclear invaginations that would be missed using DNA

staining alone (Fricker et al., 1997; Clubb & Locke, 1998).

Analogous consideration can be made regarding the

importance of cell surface delineation.

Fig. 6. Example of the segmentation results on two parts (b) and (c) of mouse mammary tissue stained for integrin. Image (a) shows the

original image. Images (b) and (c) show the results on some interactively seeded nuclei from two parts of image a. The white arrows in (b) and

(c) show concavities that were followed by the algorithm.
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The selection of these proteins was based on their

ubiquity across different types of cells and species and their

relatively high concentration in the vicinity of the nuclear

envelope and plasma membrane, respectively. In our images,

intranuclear lamin staining was sporadically seen, in the

form of bright, punctate agglomerations of protein. How-

ever, it did not prevent our algorithm from correctly

performing. It is also important to emphasize that lamin B

is highly flexible in that quality staining can be obtained

using several classical fixation methods, and also it attaches

to the second (or third) antibody in multicolour assays.

For cell surface segmentation, we chose staining of

integrins, even though other markers to proteins or lipids

specific to the plasma membrane would be also valid

candidates.

Our segmentation method requires the placement of

initializing seeds in each nucleus/cell that can be done

automatically or interactively. Automatic initialization based

on object size estimation works well with objects homo-

geneous in size and with regular shapes. For more twisted

objects, interactive initialization is required, which is kept to

a minimum, by just clicking inside each nucleus or cell.

However, we have not tested our method on highly

irregularly shaped cells such as muscle cells or neurones.

When segmenting a binucleate cell, it would be necessary to

have only one seed for the cell surface, but two seeds for the

two nuclei.

Choosing the values of the parameters for the flows and

the number of iterations of the numerical approximation to

the solution was done empirically, by tuning them to a

model computer-generated image with similar characteristics

to the rest of the images in the series that we wanted to

analyse. In our experience, the parameters are general

enough as to be applicable to specimens prepared in different

ways, and with different noise and signal characteristics. In

our case, it was also true for different types of staining, since

the same values for the parameters used to segment nuclei

using lamin staining were also used successfully to segment

the integrin-stained cells. An interesting extension of this

method would be the development of automatic techniques

to tune these parameters for given classes of images.

An obstacle to widespread application of PDEs to image

segmentation is that their numerical approximations are

computationally expensive, and therefore they are not

suitable for real time applications. This problem was par-

tially addressed using narrow band techniques. However,

the computation times were still high. Further improvement

could be achieved by reducing the domain where each seed

is embedded and moves, which in the current implementa-

tion is equal to the image size. This would allow reducing

the extent of the distance transform associated with each

seed, with the consequent memory savings and time optim-

ization. Work on a linearized version of the PDE equation

is also in progress which will considerably reduce the

computation time of the algorithm. Once these improve-

ments are implemented, our method could be massively

tested and applied for accurate delineation of nuclei or cells

prior to quantification of other intranuclear or intracellular

components in real images. Extension of these methods to

3D is also being studied. We do not anticipate fundamental

problems here, because some of the methods have already

been extended for applications to similar images (Ortiz de

Solorzano et al., 1999), and the remainder of the methods

have been extended to 3D for other applications.

In summary, we have shown this approach to be a good

alternative to DNA staining based segmentation of nuclei, in

that it provides good segmentation of both isolated and

clustered nuclei, and furthermore it was also successful for

whole cell segmentation.
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